Die Oberfläche einer Figur ist die Summe der Flächen all ihrer Seiten. Um die Fläche des Zylinders zu finden, müssen Sie die Fläche der Basis finden und zur Fläche der Außenwand oder Decke hinzufügen. Die Formel zum Ermitteln der Oberfläche eines Zylinders lautet L = 2πr2 + 2πrt.
Schritt
Teil 1 von 3: Berechnung der Oberfläche des Rohrbodens (2 x (π x r2))
Schritt 1. Zeichnen Sie die Ober- und Unterseite des Rohres
Suppendosen haben eine zylindrische Form. Wenn man darüber nachdenkt, hat die Dose oben und unten die gleiche Form, also ein Kreis. Der erste Schritt zum Ermitteln der Oberfläche Ihres Zylinders besteht darin, die Fläche dieser beiden Kreise zu ermitteln.
Schritt 2. Finden Sie den Radius Ihres Rohres
Der Radius ist der Abstand vom Mittelpunkt des Kreises zur Außenseite des Kreises. Der Radius wird mit „r“abgekürzt. Der Radius des Zylinders ist gleich dem Radius des oberen und unteren Kreises. In diesem Beispiel beträgt der Radius der Basis 3 cm.
- Wenn Sie Story-Probleme lösen, ist der Radius möglicherweise bereits bekannt. Der Durchmesser kann auch bekannt sein, d. h. der Abstand von einer Seite des Kreises zur anderen durch den Mittelpunkt. Der Radius ist der halbe Durchmesser.
- Sie können den Radius mit einem Lineal messen, wenn Sie die tatsächliche Oberfläche des Zylinders ermitteln möchten.
Schritt 3. Berechnen Sie die Oberfläche des oberen Kreises
Die Oberfläche eines Kreises ist gleich der Konstanten pi (~3, 14) mal dem Radius des Quadrats des Kreises. Die Gleichung wird geschrieben als x r2. Dies ist gleich x r x r.
- Um die Fläche der Basis zu finden, setzen Sie einfach den Radius 3 cm in die Gleichung ein, um die Oberfläche eines Kreises zu finden: L = r2. So berechnen Sie es:
- L = r2
- L = x 32
- L = x 9 = 28, 26 cm2
Schritt 4. Führen Sie die gleiche Berechnung für den unteren Kreis durch
Nachdem Sie nun die Fläche einer der Basen kennen, müssen Sie die Fläche der zweiten berechnen. Sie können dieselben Berechnungsschritte wie bei der ersten Basis verwenden. Oder Sie stellen möglicherweise fest, dass die beiden Basen dieser Kreise genau gleich sind. Es ist also nicht erforderlich, die Fläche der zweiten Basis zu berechnen, wenn Sie sie verstehen.
Teil 2 von 3: Berechnung der Oberfläche einer Rohrdecke (2π x r x t)
Schritt 1. Zeichnen Sie die Außenseite eines Rohres
Wenn Sie sich eine Suppendose in Form einer Röhre vorstellen, sehen Sie einen oberen und einen unteren Boden. Die beiden Sockel sind durch die „Wand“der Dose verbunden. Der Wandradius ist gleich dem Basisradius. Im Gegensatz zum Sockel hat diese Wand jedoch eine Höhe.
Schritt 2. Ermitteln Sie den Umfang einer der Grundflächen des Kreises
Sie müssen den Umfang eines Kreises ermitteln, um seine äußere Oberfläche (auch Mantelfläche oder Rohrdecke genannt) zu finden. Um den Umfang zu ermitteln, multiplizieren Sie einfach den Radius mit 2π. Der Umfang kann also durch Multiplikation von 3 cm mit 2π oder 3 cm x 2π = 18,84 cm ermittelt werden.
Schritt 3. Multiplizieren Sie den Umfang des Kreises mit der Höhe des Zylinders
Diese Berechnung ergibt die Oberfläche der Rohrdecke. Multiplizieren Sie den Umfang 18,84 cm mit der Höhe 5 cm. Also, 18,84 cm x 5 cm = 94,2 cm2.
Teil 3 von 3: Aufsummieren ((2) x (π x r2)) + (2π x r x h)
Schritt 1. Stellen Sie sich eine komplette Röhre vor
Zuerst stellen Sie sich die obere und untere Basis vor und finden die Oberfläche von beiden. Als nächstes stellen Sie sich eine Wand vor, die zwischen den beiden Basen verläuft und finden ihre Fläche. Stellen Sie sich dieses Mal eine ganze Dose vor, und Sie finden die gesamte Oberfläche.
Schritt 2. Multiplizieren Sie die Fläche einer der Basen mit zwei
Multiplizieren Sie einfach das vorherige Ergebnis, 28, 26 cm2 um 2, um die Fläche der beiden Basen zu erhalten. Also 28,26 x 2 = 56,52 cm2. Diese Berechnung ergibt die Fläche der beiden Basen.
Schritt 3. Addieren Sie die Fläche der Decke und die beiden Basen
Nach der Addition der Flächen sowohl des Bodens als auch des Deckels des Zylinders erhalten Sie die Oberfläche des Zylinders. Alles, was Sie tun müssen, ist die Fläche der beiden Basen zu addieren, die 56,52 cm beträgt2 und die Fläche der Decke, die 94,2 cm² beträgt2. Also, 56, 52 cm2 + 94,2 cm2 = 150, 72 cm2. Die Oberfläche eines Zylinders mit einer Höhe von 5 cm und der Grundfläche eines Kreises mit einem Radius von 3 cm beträgt 150,72 cm2.
Tipps
Wenn Ihre Höhe oder Ihr Radius ein Quadratwurzelsymbol hat, lesen Sie den Artikel Multiplizieren von Quadratwurzeln für weitere Informationen
Warnung
Denken Sie immer daran, die Fläche der Basis mit zwei zu multiplizieren, um die zweite Basis zu berechnen
Verwandte wikiHow-Artikel
- Berechnung der Oberfläche eines Kegels
- Berechnung des Zylindervolumens
- Berechnung der Oberfläche eines rechteckigen Prismas
- Ermitteln der Oberfläche eines Würfels